Do-it-yourself Solar Thermal Heating Project-Poquoson, VA July 2011 – April 2012

Motivation for Project

- 1. Explore solar technology, benefit from tax incentives
- 2. Exercise my engineering skills
- 3. Be productive rather than watching TV
- 4. Improve comfort while watching TV, etc.

Electric Power Consumption

System Block Diagram*

Theory of Control

3D CAD Model-

Google SketchUp

Solar Collector Installation-

15° East of True South, 15° Elevation* from Horizontal

Before After

*vertical orientation maximizes collection in winter, minimizes in summer when unused

Reservoir Installation in Garage

Before

- 250 gal of tap water
- Vented to atmosphere

After

Radiant Heat Distribution Manifold Installation in Coat Closet

Radiant Heat Installation:

610 sq ft: 2 Loops in Family Room, 1 in Kitchen, 1 in laundry room / bathroom

Operator Interfaces

Thermostat-Room •

Thermostat-Storage Tank

Mixing Valve

Pump Isolation Valves,
4 places

Electrical • Power Plug

Main Shutoff
Switch

Radiant Heat Circulator Shutoff Switch

Setback Timer

Fill / Drain Ports, 2 places

Project Management

- 9 month duration
- \$6,565 material costs
- 288 man-hours,
 - Essentially by a single worker
 - Online research time was significant, but is not included

Timeline of Project

Task description	Jun-11	Jul-11	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	Jan-12	Feb-12	Mar-12	Apr-12
Go ahead decision											
Install Radiant Heat System											
rmv underfloor insulation. Instl band joist insul, diffuser plates, pex pipe, manifold, 6" underfloor insul											
Fab & Install H20 Reservoir in garage											
Fab copper pipe grid assys for collectors											
Fab circulator panel assy, instl lines to Rad Heat manifold											
Fab collector assys											
Instl collectors, lines to reservoir											
1st water thru Collectors & Rad Heat Sys											
Insulate collector lines. Insti lid on reservoir											

Cost of Materials = \$6,565

Manhours

- 4 hrs / day worked, over 73 work days, by a single workman
- Band joist insul = 12.0 hrs for 95.5 linear ft = 8 linear ft / hr
- Rad heat instl = 73.9 hrs for 610 sq ft = 8.3 sq ft / hr
- Instl Manifold Feed Lines = 13.0 hrs
- Fab collector assemblies = 59.2 hrs = 19.7 hrs / assy
- Installation collector assemblies = 35.8 hrs = 11.9 hrs / instl
- Fab Reservoir = 20.7 hrs
- Fab Circulator Pallet = 42.0 hrs
- Collector Plumbing = 19.1 hrs

Total labor = 288 man-hrs

Performance of System:

- Predicted performance of Collectors and Radiant Heat System
- Data collection
- Analysis
 - Collection efficiency: overall, seasonal
 - Heating of house
 - Cost recovery
 - Reliability and Maintainability

Solar Obscuration Measurements

June 2011, 5' above ridgeline of garage roof, x = 4' out from 2^{nd} story wall

Predicted Energy Gathering

from comparable commercial collector

http://andyschroder.com/SolarEnergyResearch/SolarCollectorPowerOutput/

Predicted Heating Performance

- Calculated using free Advanced Design Suite software from Uponor
 - 68°F room temp, 24°F outdoor temp, 23 mph wind
 - 630 sq ft, average construction, Tin-Tout≤10°
 - 7,540 BTU/hr required = 1.8 gal/min @ 109°F
- Given predicted collector performance of 42,432
 BTU/day, we'll get 5.6 hrs of 68°F room temp each day.
- Existing heat pump runs in parallel.
 - Solar heat setpoint 2° above heat pump to draw from solar first
 - Degree of interaction unknown

Data Acquisition System

- Solely for initial testing, the removed
- Arduino based data logger
 - Real Time Clock for time stamping
 - SD Card Reader module for data storage
 - Cost approximately \$60
- Dataset includes
 - Temp of room
 - Temp of H20 in Reservoir
 - Outdoor Temp
 - Temp in Garage
 - Insolation on Collectors
 - Radiant Heat Status (ON/OFF)
 - Time of day

Design Flaw = Freeze Up

Trap precludes breaking siphon, therefore NO DRAIN BACK!

- 23 Jan 2013 Overnight temp = 18 deg F
- Eastern & western collectors froze & split pipes. No leak in center collector.
- Pumped tank dry

Measured Collector Performance

- No heat draw from Reservoir (Rad ht OFF)
- Measure on cloudless days, no leaves on trees
- Heat gain = (Temp rise of tank) x (vol tank) x (density water) x (heat capacity of water)

12 March 2012:

Heat Gain = $(100^{\circ}-74^{\circ})x(250 \text{ gal})x(62 \text{ lb/cu ft})x(1 \text{ BTU/lb/°F})$ =48,360 BTUs / day = 504 BTU / sq ft / day

9 Nov 2012: 510 BTU / sq ft / day

vs. predicted avg of 450 BTU / sq ft / day. Pretty Good!

Measured Heating Performance

- Works well in spring and fall- no heat pump at all!
- Unclear about winter. Interaction w/ heat pump unclear, still figuring out ramp-up / down times
- Added set-back timer to heat rooms only in afternoon & evening
- With reservoir temp around 120°F, looses
 ~6° / night with unheated garage @ 50°

Was Project Successful?

- 1. Explore solar technology, benefit from tax incentives
 - Learned much about solar technology, only got minimal tax break for insulating floor
- 2. Exercise my engineering skills
 - YES! Design / build / test of plumbing, electrical, carpentry, controls, data logging
- 3. Be productive rather than watching TV
 - Yes. Watched little TV during the project
- 4. Improve comfort while watching TV, etc.
 - Yes. Den / kitchen was 60-62°F in winter, now 66-68°F

Items in Block Diagram

Item#	<u>Description</u>	<u>Make</u>	<u>Model</u>	Cost
1	Solar Collector	self	self	\$ 483.00
2	Tubing	PEX	3/4 diam	\$ 0.46
3	Pump, Collector	Taco	009-SF5	\$ 326.00
4	Sensor, Coll'r Temp	incl w/ Steca	-	-
5	Water	God	Тар	-
6	Tubing	PEX	3/4 diam	\$ 0.46
7	Tubing	PEX	3/4 diam	\$ 0.46
8	Valve, Mixing	Honeywell	AM101-US-1	\$ 75.00
9	Pump Rad Ht	Grundfos	UP15-29SF	\$ 164.00
10	Manifold, Supply	RHT	FN5-4-90	\$ 129.00
11	Manifold, Return	incl w/ supply mfld	-	-
12	Rad Ht Loop	PEX & Joist Track	1/2 diam	\$0.89 / ft
13	T'stat, Tank	Johnson Controls	A419ABC-1C	\$ 56.75
14	T'stat, Room	Johnson Controls	A419ABC-1C	\$ 56.75
15	Controller, Collector	Steca/Solene	TR 0301 U	\$ 187.00
16	Sensor, Tank Temp	incl w/ Steca	-	-
17	Sensor, Room Temp	?	RTD, 1000Ω	\$ 10.00
18	Sensor, Tank Temp	?	RTD, 1000Ω	\$ 10.00
19	Valve, Flow Cntl	incl w/ supply mfld	-	-
20	Timer, Temp Setback	Amazon.com	7 day	\$ 20.00